Abstract
Background Blood donation saves lives. Provided they are in good health, male volunteers can donate as often as six times per year from the age of 18 into their late sixties. The burden of blood donation is very unevenly distributed, with a small minority of altruistic individuals providing this critical resource. While the consequences of persistent iron depletion in blood donors have been studied in the context of cancer and coronary heart disease, potential effects of the erythropoietic stress from repetitive large-volume phlebotomy remain unexplored. We sought to investigate if and how repeated blood donations affect the clonal composition of the hematopoietic stem and progenitor cell (HSPC) compartment.
Methods 105 healthy, male individuals with an extensive blood donation history (median of 120 donations per donor; median age of 66 yrs.) were screened for the presence of clonal hematopoiesis (CH) using a sequencing panel covering 141 genes commonly mutated in human myeloid neoplasms. The control cohort consisted of 103 healthy, male donors with a median of 5 donations per donor and a median age of 63. Donors positive for CH were subsequently studied longitudinally. The pathogenicity of detected variants was compared using established scoring systems. Finally, to assess the functional consequences of blood-donation induced CH, selected CH mutations were introduced by CRISPR-mediated editing into HSPCs from human cord blood (CB) or bone marrow (BM). The effect of these mutations was tested under different stress stimuli using functional ex vivo long-term culture initiating cells (LTC-IC) assays.
Results: Compared to the control cohort, frequent donors were significantly more likely to have mutations in genes encoding for epigenetic modifiers (44.7 vs. 22.3 %), most specifically in the two genes most commonly mutated in CH, DNMT3Aand TET2 (35.2 vs. 20.3 %). However, no difference in the variant allele frequency (VAF) of detected mutations was found between the groups. Longitudinal analysis revealed that the majority of the mutations remained at a stable VAF over an observation period of approximately one year. Three DNMT3A variants from the frequent donor cohort were introduced into healthy HSPCs and functionally analyzed: All expanded in response to EPO, but none responded to LPS or IFNg stimulation. This contrasted with the leukemogenic DNMT3A R882H mutation, which did not expand in the presence of EPO but instead responded strongly to inflammatory stimuli.
Conclusions: Frequent whole blood donation is associated with a higher prevalence of CH driven by mutations in genes encoding for epigenetic modifiers, with DNMT3A and TET2 being the most common. This increased CH prevalence is not associated with a higher pathogenicity of the associated variants and is likely a result of the selection of clones with improved responsiveness to EPO under the condition of bleeding stress. Our data show that even highly frequent blood donations over many years is not increasing the risk for malignant clones further underscoring the safety of repetitive blood donations. To our knowledge, this is the first CH study analyzing a cohort of individuals known for their superior health and survival, able to donate blood until advanced age. Thus, our analysis possibly identified mutations associated with beneficial outcomes, rather than a disease condition, such as mutations in DNMT3A that mediated the improved expansion of HSPCs in EPO enriched environments. Our data support the notion of ongoing Darwinian evolution in humans at the somatic stem cell level and present EPO as one of the environmental factors to which HSPCs with specific mutations may respond with superior fitness.
Disclosures
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.